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A NEW CLASS OF LAGUERRE POLY-BERNOULLI
NUMBERS AND POLYNOMIALS
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ABSTRACT. In this paper, we introduce a new class of Laguerre poly-
Bernoulli polynomials and give some identities of these polynomials re-
lated to the Stirling numbers of the second kind. We derive some im-
plicit summation formulae and general symmetry identities are derived
by using different analytical means and applying generating functions.
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1. INTRODUCTION

The two variable Laguerre polynomials L, (x,y) are defined by the generat-
ing function [5]

1) N Cofat) = 3 Lnley) o
n=0 :

where Cy(z) is the 0-th order Tricomi function [14]
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and are represented by the series

n

nl(—1)%y"*x*

(3) Ly(z,y) = NCISTE)E

s=0

As it is well known, the Bernoulli polynomials are defined by their
generating function

(4) (et t_ 1) et — ;]Bn(x)%n!, (see [1] — [15])

When z =0, B, = B,(0) are called the Bernoulli numbers.
From (4), we have

(5) By(z) = f: ( » )Bnmxm

m=0
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The classical polylogarithm function Lig(z) is

o]

. 2™
(6) Lig =Y — |2 <1 (see [6], [7])
m=1
so for k <1,
Lip, = —In(1 — z), Lig(z) = T Li_y = TS
The poly-Bernoulli polynomials are given by
le(l —e
(7) 64 ZBn —, (see [6], [8] — [11])
n=0 nl
For k =1, we have
Lil(l — e*t) "

® et —1 e = ZB :v)—,

From (4) and (8), we obtain
BM(x) = Bu(x), (n>0)
Very recently, Pathan et al. [12] introduced the generalized Hermite-
Bernoulli polynomials of two variables HB(Q)(.Z‘ y) is defined by

t @ 2 t"
o e

n=0

which are essentially generalization of Bernoulli numbers, Bernoulli polyno-
mials, Hermite polynomials and Hermite-Bernoulli polynomials g B, (z,y)
introduced by Dattoli et al. ([4], p. 386 (1.6)) in the form

oyt Z v
(10) (et_ 1) € _n:OHBn(xvy)n!

The stirling number of the first kind is given by
(11) (@) =z(x—1) - (x —n+1) ZSlnl)x (n>0)

and the stirling number of the second klnd is defined by generating
function to be

o0 !
(12) (e — 1" =S Sl n)%
l=n

The 2-variable Kampe’ de Fe'riet generalization of the Hermite polynomials
[3] and [4] reads

rn2'r

(13) ;ry—nzwni%

These polynomials are usually defined by the generating function

gL > tn
(14 I =3 H (o)
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and reduce to the ordinary Hermite polynomials H,(x) (see [1]) wheny =
and x is replaced by 2x.

-1

In this paper, first we gives the definition of the Laguerre poly-Bernoulli

polynomials LB}P (z,y, z) and we have given some formulae of those polyno-
mials related to the Stirling numbers of second kind. Some implicit summa-
tion formulae and general symmetry identities are derived by using different
analytical means and applying generating functions. These result extended
some known summations and identities of generalized Hermite-Bernoulli
polynomials polynomials studied by Dattoli et al., Khan, and Pathan and

Khan.

2. A NEW CLASS OF LAGUERRE POLY-BERNOULLI NUMBERS AND
POLYNOMIALS

Now, we define the Laguerre poly-Bernoulli polynomials as follows:

Lik(l — eft)

(15) etfl yt+2t C IL‘t ZLB(k) T, Y,z (k S Z)
so that
n B gw g -
n s Y

= (m — 2k)'k!(n — m)!
)

when z =y = 2 = 0, B(k) = LB( (0,0,0) are called the poly-Bernoulli

numbers. By (15), we easily get B¥ = 0. For k= 1, from (15), we have

Liy(1—

) gt
etfl eV Oy (at) ZLB z,y,z2)—, (k€ z)

(17)

Thus by (15) and (17), we get
LBY(2,y,2) = LBu(w,y,2), (n20).

Theorem 2.1. For n > 0, we have

(18) LBg)(:c,y,z) = Z ( " ) B B, _m(z,y, 2)

m )m+1t
m=0

Proof. Applying definition (15), we have

Lig(1
t__

) O () ZLB(k) vy z

e
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= — yttzt
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In particular k = 2, we have

1 2 to
2 _ -+t
LB (,y,2) = <€t—1> e Co(wt)/o e
[e.e]
Bth> ( t > Jat?
= Z e V] € C()(It)
<m= m+1 e 1
o tm
- Z m-+1 ZLB Ty 2

Replacing n by n — m in the above equatlon, we have

n

= Z Z < ) | LBn—m(Ivyvz)%

n=0m=0

On equating the coefficients of the like power of ¢ in the above equation, we
get the result (18).

Theorem 2.2 For n > 1, we have

(3]

n (k) k
By Ly ok (x,y)2"n!
1 B(k) _ m m—2k\L,
(19) LBy (@, y.2) Z mlk!(n —m — 2k)!
m=0 k=0
Proof. From equation (15), we have

t L !
ZLBn LY,z —, lk(fl)eytﬂﬁco(ﬂ)

(o) (S bt

Replacing n by n — m in the above equation and comparing the coeffi-
cients of t", we get the result (19).

Theorem 2.3 For n > 0, we have

n PRl )Gy
p+1, l)< )
20 B (z,y,z 2 By _y(z,y, 2
) . =33 CIERE R (1) e

Proof. From equation (15), we have

(21) ZLB ey, 2 t_!:(Lik(lt—e_t)) K@tt1>eyt+ztaco(ﬂ)}

Now
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x P (- 1)l+

— Y s’

p=1 1=l

oo (ptl I4+p+1
(— 1) P Solp+1,1)
22) Z<Z '2§+1 )p'

p=0 \l=l

From equation (21) and (22), we get

oo n oo /p+1 I+p+1 £
S LBY v 3 (—1) g2+ 1.0) tn
nZOLBn (‘Tvyvz)n! - pgo ( lk p_|_ 1 ZLB T, Y,z nl

1=l

Replacing n by n — p in the r.h.s of above equation and comparing the co-
efficients of t", we get the result (20).

Theorem 2.4 For n > 1, we have

(23)
n p [5] ! k
-1 Ly por(2,y)z
Bk 1.2)—, B%) = ( In! ZnopmE\ IR
LPnp (.Ti,y+ ,Z) LPnp (33,1/,2) I;lZI i 1k lnSZ(p’l)p'k'(n—p—Qk)'
Proof. Using the definition (15), we have
S~ . B A o Y "
ZLBn (:Evy + 172)5 - ZLBn (mvy»z)a
n=0 n=0
Lig(1 L -t
_ 'Lkit_l ) et t+zt2 Co(zt) — i1 — _1 ) 6yt+2t200(.’1,‘t)
= Lig(1 — e7t) eV Cy(t)
o0 p 1+
_1)i+p P
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p=1 \I=1 P
o0 Y4 l+ o0
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Replacing n by n — p in the above equation and comparing the coeffi-
cients of ", we get the result (23).

Theorem 2.5 For d € N with d = 1(mod2), we have

(24)
e l+P+1l'S + 1,0 a+
B =3 (1) S e e
p=0 =0 a=0
Proof. From equation (15), we have
Lip(l — et
ZLB (@,2) t—. - —Zkét — b et o(ar)
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Lig(1 — et -
= < k( n )> <€dt — Ze(a+y)t+ZtQCo(It))

a=0

2 (R (1) So(p £ 1,1) - a+t
- (S (SRR O (5w Sy, (o2

p=0 \i=1 m=0
Replacing n by n — p in the above equation and comparing the coeffi-

cients of ¢", we get the result (24).

3. IMPLICIT SUMMATION FORMULAE INVOLVING LAGUERRE
POLY-BERNOULLI POLYNOMIALS

This section of the paper is devoted to employing the definition of the La-
guerre poly-Bernoulli polynomials LBr(Lk) (z,y, z) to obtain finite summations.
For the derivation of implicit formulae involving the Laguerre poly-Bernoulli
polynomials LBr(lk)(;r, y, z) the same consideration as developed for the or-
dinary Hermite and related polynomials in Khan [7] and Pathan [12]-[13]
holds as well. First we prove the following results involving Laguerre poly-

Bernoulli polynomials LBﬁLk) (z,y,2).

Theorem 3.1. For z,y,z € R and n > 0, The following implicit summation

formula for Laguerre poly-Bernoulli polynomials LBS“)(JC, y, z) holds true:

lLp
(25) LBZ(—]:-L('T?Z)'/Z) = § : ( m > ( ’IpiL ) (’U —y) i LBl(—O—?U m— ”(x Y,z )

m,n=0
Proof. We replace t by ¢t + u and rewrite the generating function (15) as
(26)

Lip(1 — e (4w 2 _ G th up
et+u—71) A Oy (2(tHu)) = eV Z LBI(+L(95 Y, %) - Tl
1,p=0

Replacing y by v in the above equation and equating the resulting equation
to the above equation, we get

(0-p)(t+0) o B® tar O~ t uP
(27) WP A C )Z T > LB, Z)ll
l,p=0 L,p=0

on expanding exponential function (27) gives

(28)
o 00 o
(v )t +w)” (k) £ ®) thup
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N=0 1520 =

which on using formula [[15], p. 52(2)]
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in the left hand side becomes

(30)
0 l o0 l
(’U _ m+n My up B (k) thuP
S L S B = 2 B
m,n=0 l,p=0 l,p=0

Now replacing I by { — m, p by p — n and using the lemma [[15], p
100(1)] in the left hand side of (30), we get

(31)
! p l,p
(k) t uP k) thu
m;mpzo m,n, LBHP @9 D) sy oy = 1By (@0 )

Finally, on equating the coefficients of the like powers of ¢t and u in the
above equation, we get the required result.

Remark 1. By taking [ = 0 in equation (25), we immediately deduce the
following corollary.

Corollary 3.1. The following implicit summation formula for Laguerre
poly-Bernoulli polynomials LBﬁLk)(x, v, z) holds true:

(32) BP0, =Y ( P ) (v — 1)1 B, (2.4.2)

n
n=0
Remark 2. On replacing v by v+y and setting = z = 0 in Theorem (3.1),
we get the following result involving Laguerre poly-Bernoulli polynomial of
one variable

(33) LBl(fL(v+y) = lf: ( nll ) ( i’; ) (v)m”LBz,(fomfn(y)

m,n=0

whereas by setting v = 0 in Theorem (3.1), we get another result involving
Laguerre poly-Bernoulli polynomial of one and two variable

6 BOw = S (nﬂ)(ﬂ( o)™ rBE, L ,2)

m,n=0
Remark 3. Along with the above result we will exploit extended forms

W (z,v) by setting z = 0 in the

of Laguerre poly-Bernoulli polynomial 1B, ip

Theorem (3.1) to get

# = 3 () (2)w-rast, e

m,n=0

Theorem 3.2. For z,y,z € R and n > 0. Then

n
Ny
R B N G LS

=0
Proof. Since
o0 .
t"  Lip(l — e
ZLBgC)(-’L',y"‘U,Z)ﬁ: k(

t) (y+u)t+zt2c( t)
of — 1 (& o\x
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00 .
4

E 1 BW)( a:y—i—uz (g 1 BW (z,y, z) ) E ujﬁ

n=0 7=0

Now, replacing n by n — j and comparing the coefficients of ¢, we get the
result (36).

Theorem 3.3. For z,y,z € R and n > 0. Then

m

(37) 1B (z,y +u, 2 +w) = Z ( " ) LB,(Lk,)m(x.,y, 2)Hp, (u, w)

m=0
Proof. By the definition of Laguerre poly-Bernoulli polynomials and the
definition (14), we have

Lir(1 = e™")  (ruwiserwp - (
S Colat) = ;)LBn T,y 2 Z Hop(u w)

Now, replacing n by n — m and comparing the coeflicients of t", we get the
result (37).

Theorem 3.4. For z,y,z € R and n > 0. Then

n—-2;j (5] (k)
By’ Ly —m—24(x, y)zin!
B
(38) LBy (z,y, 2 mE:OZ i —m — 2))]

Proof. Applying the definition (15) to the term Lz—k(};’—f) and expanding

the exponential and tricomi function e¥+2%*Cy(at) at t = 0 yields

)(ZL xytn> iz]tw

> By’ Ly (, n N
S st £(5 2 (45

=0

Lip(l—e™") e -
—— ¢ Colat) =

m=0

NOW, replacmg n by n — 27 and comparing the coefficients of ¢, we get the
result (38).

Theorem 3.5. For z,y,z € R and n > 0. Then

" onl(—1 B Z
(39) LB 2,y +1,2)= ) : (n)—(nz fj)?ﬂgl( j)(y |

m,j=0

Proof. By the definition of Laguerre poly-Bernoulli polynomials, we have

> t" Lip(l et ;
Z LBf(zk)(l’-,y +1, Z)a = % W Dt+ tZCo(:vt)
_ (i (Z 1B (v,2) > ) DGty
- _ 2
n=0 \m=0 (TL m)'n' 7=0 (]'
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B'Ez)m ) 2 n+j
- (S (L CH a2 ) e

n=0 \ j=0m=0
Replacing n by n — j, we have

> (& & (1 (@) aBY(4.2) |
;L‘B?(Lk)(xVy+l’z)ﬁ: Z Z 1\2 t =

=0 \mgmo (n —m)n!(41)

on comparing the coeflicients of ", we get the result (39).

Theorem 3.6. The following implicit summation formula for Laguerre
poly-Bernoulli polynomials LBT(LIC)(x7 Y, z) holds true:
(10) By 1 =30 (1) B

m
m=0

Proof. By the definition of Laguerre poly-Bernoulli polynomials, we have

ZLBELk)('%vy—i_l < +ZLB :L.yv

n

_ <sz(1 —c )) (et + 1)€yt+Zt2CO(xt)

t—1
B)( — 1"
-ty (35
m=0
> ym 00 X m
_ZLBn ‘Tyz Z_—FZLB’EL)(x’y’Z)E
n=0 "m=0"""  n=0 ’
00 m
_ZZLBn m (T, Y, 2) ( — )'+ZLBr(lk)(x,y,z)m
n=0m=0 n=0

Finally equating the coefficients of the like powers of t", we get the
result (40).

Theorem 3.7. The following implicit summation formula for Laguerre
(k)

poly-Bernoulli polynomials 7By’ (z,y, z) holds true:

(41) LB (@, -y, 2) = (1), B (2,9, 2)

Proof. We replace —t by ¢ in (15) and then subtract the result from (15)
itself finding

(B ey (B0 iy

et — et —1

) .
Z - n]LB (xayaz)ﬁ

n=0
which is equivalent to
ZLng)(@y’Z)H—ZLB&)(UJ, Z —1)"| Bk (:Lyz)ﬁ
n=0 n=0

n=0
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and thus equating coefficients of the like powers of t" we get (41).

4. GENERAL SYMMETRY IDENTITIES FOR LAGUERRE POLY-BERNOULLI
POLYNOMIALS
In this section, we give general symmetry identities for the Laguerre poly-
Bernoulli polynomials LBT(lk)(g;,y.,z) by applying the generating function
(15). The result extend some known identities of Khan [7] and Pathan
et al. [12]-[13].

Theorem 4.1. Let a,b > 0 and a # b. For z,y,z € R and n > 0. Then the
following identity holds true:

m

> ( . >bma"_mLszk)m(x,by,b22)LB7(r’f)(rr,ay,a2Z)

n
42) =3 ( » > a0 BY | (2, ay, a®2) B (x, by, *2)

Proof. Start with

‘ —e . —e 2 2242
(43) g(t) — <(le(1 e(eat)(f/Zlk)((lebt f 1))(Co($t)) > eabyt+a b2t

Then the expression for ¢(t) is symmetric in @ and b and we can expand g(t)
into series in two ways to obtain

oo o
(at)" (bt)™
glt) = T;OLB#”(@ by, 0°2) = D LB (x,ay,a*2)

n!
m=0

o0 n
= Z Z ( " ) an_mmeBﬁr]f)(l'aby7b2z)LB£lk_)m(w,ay,a2z)t"

On the similar lines we can show that

> (bt)" (at)™
_ k) 2 (k) 2
g(t) = nEZO LBy (z,ay,a”z) - mgzoLBm (z, by, b"2) o

o0 n
-2 2 ( m ) a0 LB, (2, ay,a%2) L B (@, by, 2t

n=0m=0
Comparing the coefficients of ¢ on the right hand sides of the last two equa-
tions we arrive at the desired result.

Remark 1. By setting b = 1 in Theorem (4.1), we immediately following
result

Z ( " )anmLBé@m(xvyvz)Lvaf)(wvaya CLQZ)

m
m=0
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n
w =3 (1) e )
m=0

Theorem 4.2. Let a,b > 0 and a # b. For z,y,z € R and n > 0. Then the
following identity holds true:

- n e mah—m b 2 (k) 2
z m Zb xby—|——z—|—jb By (z,az,av)

m=0 =0 j=0
(45)
n b—1a-1
Z ( ) am™v"t ™"y, (az ay + gz +7j,a u) LBﬁ,’f)(x., bz, b%v)
m=0 i=0 j=0
Proof. Let

(eat _ 1)(€bt _ 1) (eat _ 1)(ebt _ 1)

Lip(1 — e abt 1
g(t) = ( 'Lk( € )CO(ZEt)) eabyt+a2b2ut2 <eebt >

g(t) B <L’ik(1 _ e_at)Lik(l _ e_bt)(CO(J?t))2> <(eabt _ 1)2eab(y+z)t+a2b2(u+v)t2>

(el 1) 7
« <Lik(1 — e_bt)CO(xt)) pabzt+a?bor? <6abt — 1)
(ebt — 1) et —1
g(t) _ (sz(l (_e;__at])_)C’O(xt)> eabyt+a2b2ut2 gebti
Lik(l — e_bt)CO(xt) abzt+a?b?vt? - atj
“o () 2

_ 16-1 m
_ (sz(l — e )Co(at) > 2b2ut2azz (by+itj)at Z B®)(z,az,a v)(bt)

t 1
(e?t — 1) == m!

oo a—1b-1 0
k b. . (at)” (bt)™
= E E A B (x., by + P b2u> E 1B (z, az,av) -

(47)
o n a—1b-1 b 00

= Z Z ( > LBnk m (55 by + —Z +j,0%u ) Z 1B (2, az, a®v)b"a" "
n=0m=0 =0 j=0 m=0

o n b—1a-1 00
Z ( ) Z Z LB,(Lk_)m (:c, ay + %z’ + 7, a2u) Z LBT(,’f) (z, bz, b%)b""mamt"

=0 j=0 m=0
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By comparing the coefficients of t™ on the right hand sides of the last two
equations, we arrive at the desired result.

Theorem 4.3. Let a,b > 0 and a # b. For x,y,z € R and n > 0. Then the
following identity holds true:

a—1b-1
Z( ) bma™ ™y () (:c by—l—gz—ﬁ—j b2> (k) (9&.,@2—1—%3’,@2@)
0

m=0 =0 j=
“9) b—1a—1
= Z " ZZambn_mLB(k) (:v ay + gz'+j a2u) 1BW (2 bz + 2j )
‘ m s £ n—m ) b ) m 3 a 3
m= 1=0 7=

Proof. The proof is analogous to Theorem (4.2) but we need to write
equation (46) in the form

(50)
oo a—1b-1 50
(k b 2.\ (at)" (k) (o)™
Z LBnm<fEby+ —i+7,b ) ZLBm (a:az+b], ) -
n=0i=0 j=0 m=0
On the other hand, equation (46) can be shown equal to
(51)
oo b—1a—
a. . b (at)™
— , Bk b
g(t) g;; (xay%—bz—i—j/au) o Z <:1: z+ ja ) -

Next making change of index and by equating the coefficients of t” to zero
in (50) and (51), we get the result.
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